- Technology
- Products
The answer is hidden in your data. Quaartz reveals it for you.
Validate. Explore. Prototype. Integrate.
- Solutions
customer Stories
Learn about the ways our customers use Quaartz
- Company
The answer is hidden in your data. Quaartz reveals it for you.
Validate. Explore. Prototype. Integrate.
customer Stories
Learn about the ways our customers use Quaartz
Breast cancer is one of the most common cancers today in women. A breast mass in patients means a tumour. It does not necessarily imply a malignant one. Hence, American oncologists perform a fine needle aspirate (FNA) on the cancer patient.
Then, they examine the resulting cells by microscopy and extract the cells’ nuclei features from the histopathological image. The most critical step is this feature extraction.
The goal is to select elements of this image that one can measure for further computational analysis. At the same time, the measures should be representative of cancer. We aim to use elements of the image measured as either a diagnostic or a prognostic indicator. The early detection of cancer is an efficient means to improve the patient’s survival rate.
The typical features extracted are:
Several figures are computed for each feature.
The diagnosis of cancer has been mostly dependent on traditional approaches, using trained professionals’ expertise. However, a senior trained professional is not always available.
Quaartz’ Machine Learning approach can help automate, in part, the cancer risk prediction. Thus senior and junior professionals alike get access to the same analyzed data from cancer patients. They can provide a better, quicker diagnosis, hence improving survival rates.
It poses the following oncology question:
Can cancer prediction distinguish malignant from benign tumours?
The Quaartz predictive models’ results reach a 96% accuracy, a 92% MCC and a 99% AUC based on real data for breast cancer prediction. Breast cancer is the most common cancer among women, accounting for 25% of all cancer cases worldwide. It affects 2.1 million people yearly. Early diagnosis through breast cancer prediction significantly increases the chances of survival.
A Fine Needle Aspiration biopsy (FNA) is a biopsy that produces a fast, reliable, and economic evaluation of tumour lesions. It is a minimally invasive scheme that utilizes a fine needle to aspirate tissue from mass lesions. It expedites the sequence between the diagnosis and the beginning of therapy for breast cancer.
FNA is ideally conducted by an expert medical biologist who can follow with prompt microscopic examination. Research indicates that the most experienced physicians can diagnose breast cancer using FNA with a 79% accuracy.
Quaartz has selected the following four main criteria out of the thirty available in the dataset. They approximately bear the same weight in the decision to identify breast cancer:
Quaartz improves breast cancer predictions by 17% (from 79% to 96%). The artificial intelligence tool distinguishes benign from malignant tumours by providing a probability of the tumour being one or the other. It can also help the oncologist understand how each element measured impacts the diagnosis. For instance, it can prove the relationship between the tumour’s overall dimension and breast cancer chances.
In one week, oncologists gained significant support in their cancer diagnosis and their fight against breast cancer by:
Start extracting value from your data
© MyDataModels – All rights reserved | Credits | Terms of use | Privacy and cookies policy