Failure Prediction

Failure Prediction

Is it possible to know to use machine learning to make failure prediction?

Modelling equipment downtime is referred as failure prediction. These models are based on data collected from past failures of a given equipment (or similar ones). Machine learning is well suited to model current equipment behaviour and its potential breakdowns. This way, production equipment failures can be anticipated and maintenance can be scheduled before the failure even happens, thus avoiding painful and unnecessary costs.

Problem to solve

  • Is it possible to know that a piece of equipment is going to break before it happens?
  • It is possible to schedule maintenance ahead of an equipment breakdown in order to prevent downtime?
  • Is it possible to schedule maintenance more effectively than what is currently done?
  • Can machine learning be used in order to anticipate and predict breakdowns?
  • Benefits of TADA
    in equipment failures

    Manufacturing, Maintenance and Operation Managers can benefit from predictive models. Yet they are not data scientists and may not have the required skills in machine learning nor coding experience to build them from scratch.

    They collect, in the course of their daily activities, considerable amounts of data. Indeed, most equipments are instrumented with sensors. Therefore, data such temperature, pressure, moisture, exposition to light, duration of use since the last downtime, are typically collected. Even though often considered as Big Data because they range in the millions of measures over the course of a year for instance, the particular case of failure prediction falls into the Small Data category because it has usually occured a few dozens or hundreds of times over the past years. Traditional machine learning tools work well with Big Data but do not perform well for prediction of Small Data (failure prediction) within a batch of Big Data (unbalanced dataset).

    MyDataModels allows domain experts such as manufacturing managers, maintenance managers, operation managers, facility managers to automatically build predictive models from their Small Data. They can use their raw data directly: no normalization, no outliers handling nor feature engineering are required. Thanks to this limited data preparation, the predictive results extrapolated from this specific historical dataset are obtained with a few clicks in less than two minutes on a standard laptop.

    MyDataModels brings a self-service solution for those who have Small Data and no data scientists.

    TADA brings new possibilities for failure prediction

    Manufacturers are constantly under pressure to stay competitive by optimizing processes, improving efficiency of aging infrastructure, reducing unplanned downtime, sudden failures and maintenance costs.

    A CXP Group study found that 95% of companies describe their current maintenance processes as ‘not very efficient’. As of now, production managers and machine operators operate on scheduled maintenance to prevent downtime. Unfortunately, 50% of these preventive maintenance activities are ineffective, i.e. they happen at a time when the machine does not need it.

    “Predictive model reached an 96% accuracy rate”

    In such a failure detection use case based on actual manufacturing equipment data, the results obtained by using MyDataModels’ predictive models are more than helpful with a 96% accuracy rate. In 96% of cases, a breakdown was predicted before it happened.

    By using an automated machine learning solution like TADA, companies can now proactively identify problems by running a root cause analysis and push fixes including spare-parts, software, hardware and firmware to eliminate possible points of failure or degraded performance that end-users could experience – ultimately increasing customer satisfaction and competitive advantage.